fibula fracture orthobullets

Depending on the exact location, a proximal tibial fracture may affect the stability of the knee as well as the growth plate. There are several ways to classify tibia and fibula fractures. Indications. Are you sure you want to trigger topic in your Anconeus AI algorithm? traveling traction), placed in metaphyseal segment at the concavity of the deformity, posteriorly placed blocking screw in proximal fragment and laterally placed blocking screw in the metaphyseal fragment help direct the nail more centrally, avoiding valgus/procurvatum deformities, increase biomechanical stability of bone/implant construct by 25%, not associated with increased infections, wound complications, and nonunion compared to closed-nailing techniques, ensure fracture is reduced before reaming, overream by 1.0-1.5mm to facilitate nail insertion, confirm guide wire is appropriately placed prior to reaming, should be "center-center" in the coronal and sagittal planes distally at the physeal scar, anterior aspect of nail should be lined up with axis of tibia when inserting nail - typically should line up with 2nd metatarsal in absence of tibial deformity, statically lock proximal and distally for rotational stability, no indication for dynamic locking acutely, number of interlocking screws is controversial, two proximal and two distal screws in presence of <50% cortical contact, consider 3 interlock screws in short segment of distal or proximal shaft fracture, prefer multiplanar screw fixation in these short segments, lateral may have more soft tissue interference but may be preferred in setting of soft tissue/wound issues, generally, minimally invasive plating is used to preserve soft tissues, plate attached to external jig to allow for percutaneous insertion of screws, must ensure appropriate contour of plate to avoid malreduction, higher risk for wound issues, particularly in open fractures, superficial peroneal nerve (SPN) commonly at risk laterally, below knee amputation (BKA) vs. above knee amputation (AKA) based on degree of soft tissue damage, standard BKA vs. ertl/bone block technique, infrapatellar nailing with patellar tendon splitting and paratendon approach, suprapatellar nailing may have lower rate of anterior knee pain, more common if nail left proud proximally, lateral radiograph is best radiographic views to evaluate proximal nail position, pain relief unpredictable with nail removal, all tibial shaft fractures - between 8-10%, higher in proximal 1/3 tibia fractures - up to 50%, patellar tendon pulls proximal fragment into extension, while hamstring tendons and gastrocnemius pull the distal fragment into flexion (procurvatum), distal 1/3 fractures have a higher rate of valgus malunion with IM nailing compared to plating, definitive management with casting or external fixation, most common deformity is varus with nonsurgical management, varus malunion may place patient at risk for ipsilateral ankle pain and stiffness, starting point too medial with IM nailing, adequate reduction, proper start point when nailing, if malalignment is noted immediately after surgery, return to operating room is appropriate with removal of nail, reduction and nail reinsertion, if malunion is appreciated at later followup, eventual nail removal and tibial osteotomy can be considered, most appropriate for aseptic, diaphyseal tibial nonunions, oblique tibial shaft fractures have the highest rate of union when treated with exchange nailing, consider revision with plating in metaphyseal nonunions, BMP-7 (OP-1) has been shown equivalent to autograft, often used in cases of recalcitrant non-unions, compression plating has been shown to have a 92-96% union rate after open tibial fractures initially treated with external fixation, fibular osteotomy of tibio-fibular length discrepancy associated with healed or intact fibula, highest after IM nailing of distal 1/3 tibia fractures, increases risk of adjacent ankle arthrosis, should always assess rotation in operating room, obtain perfect lateral fluoroscopic image of knee, then rotate c-arm 105-110 degrees to obtain mortise view of ipsilateral ankle, may have reduced risk with adjunctive fibular plating, LISS plate application without opening for distal screw fixation near plate holes 11-13 put superficial peroneal nerve at risk of injury due to close proximity, saphenous nerve can be injured during placement of locking screws, transient peroneal nerve palsy can be seen after closed nailing, EHL weakness and 1st dorsal webspace decreased sensation, usually nonoperatively with variable recovery expected, severe soft tissue injury with contamination, longer time to definitive soft tissue coverage, may require I&D or eventual removal of hardware, use of wound vacuum-assisted closure does not decrease risk of infection, Proximal Humerus Fracture Nonunion and Malunion, Distal Radial Ulnar Joint (DRUJ) Injuries. This procedure involves placing a piece of foam in the wound and using a device to apply negative pressure to draw the edges of a wound together. The tibia is a larger bone on the inside, and the fibula is a smaller bone on the outside. The tibia is a larger bone on the inside, and the fibula is a smaller bone on the outside. Vertical medial malleolus and impaction of anteromedial distal tibia, 2. These fractures occur in the knee end of the tibia and are also called tibial plateau fractures. Obtain AP and lateral views of the knee to look for associated injury to the knee. posterior border of the biceps femoris tendon, Shoulder Anterior (Deltopectoral) Approach, Shoulder Lateral (Deltoid Splitting) Approach, Shoulder Arthroscopy: Indications & Approach, Anterior (Brachialis Splitting) Approach to Humerus, Posterior Approach to the Acetabulum (Kocher-Langenbeck), Extensile (extended iliofemoral) Approach to Acetabulum, Hip Anterolateral Approach (Watson-Jones), Hip Direct Lateral Approach (Hardinge, Transgluteal), Hip Posterior Approach (Moore or Southern), Anteromedial Approach to Medial Malleolus and Ankle, Posteromedial Approach to Medial Malleolus, Gatellier Posterolateral Approach to Ankle, Tarsus and Ankle Kocher (Lateral) Approach, Ollier's Lateral Approach to the Hindfoot, Medial approach to MTP joint of great toe, Dorsomedial Approach to MTP Joint of Great Toe, Posterior Approach to Thoracolumbar Spine, Retroperitoneal (Anterolateral) Approach to the Lumbar Spine, may be done supine with bump under affected limb or in lateral position, Make linear longitudinal incision along the, may extend proximally to a point 5cm proximal to the fibular head, begin proximally and incise the fascia taking great care not to damage the common peroneal nerve, about 10-12 cm above the tip of the lateral malleolus, the superficial peroneal nerve pierces the fascia, distal - may be extended distally to become continuous with, Kocher lateral approach to the ankle and tarsus, susceptible to injury at junction of middle and distal third of leg, if injured will cause numbness on the dorsum of the foot. Similar to a nondisplaced medial malleolus fracture, a nondisplaced lateral malleolus fracture can often be treated with a short leg cast or walking boot. Wang Q, Whittle M, Cunningham J, et al. There are several distinct portions of the fibula in terms of structure, including the head, neck, shaft, and the distal end termed the lateral malleolus. Are you sure you want to trigger topic in your Anconeus AI algorithm? Boden BP, Lohnes JH, Nunley JA, et al. Transverse comminuted fracture of the fibula above the level of the syndesmosis, 2. A retrospective study of two hundred . Talofibular sprain or distal fibular avulsion, 1. Technique guides are not considered high yield topics for orthopaedic standardized exams including ABOS, EBOT and RC. The injury is common in athlete who is engaged in collision or contact sport . - Radiographic Studies. Medial malleolus transverse fracture or disruption of deltoid ligament, A - infrasyndesmotic (generally not associated with ankle instability), avulsion fracture of posterior tibia resulting from tripping, AITFL avulsion off anterior fibular tubercle usually Fractures that involve syndesmotic injury or ankle or knee fracture often require surgical treatment. We'll assume you're ok with this, but you can opt-out if you wish. Are you sure you want to trigger topic in your Anconeus AI algorithm? - C1 diaphyseal fracture of the fibula, simple. Although tibia and fibula shaft fractures are amongst the most common long bone fractures, there is little literature citing the incidence of isolated fibula shaft fractures. Approximately 7-16% knee ligament injuries are to the posterolateral ligamentous complex, only 28% of all PLC injuries are isolated, usually combined with cruciate ligament injury (PCL > ACL), common cause of ACL reconstruction failure, contact and noncontact hyperextension injuries, three major static stabilizers of the lateral knee, most anterior structure inserting on the fibular head, originates at the musculotendinous junction of the popliteus, meniscofemoral and meniscotibial ligaments, inserts on the posterior aspect of the fibula posterior to LCL, popliteus works synergistically with the PCL to control, popliteus and popliteofibular ligament function maximally in knee flexion to resist external rotation, LCL is primary restraint to varus stress at 5 (55%) and 25 (69%) of knee flexion, arcuate complex includes the static stabilizers: LCL, arcuate ligament, and popliteus tendon, Patellar retinaculum, patellofemoral ligament, 0-5 mm of lateral opening on varus stress, 0-5 rotational instability on dial test, Sprain, no tensile failure of capsuloligamentous structures, 6-10 mm of lateral opening on varus stress, 6-10 rotational instability on dial test, Partial injuries with moderate ligament disruption, > 10 mm of lateral opening on varus stress, no endpoint, > 10 rotational instability on dial test, no endpoint, often have instability symptoms when knee is in full extension, difficulty with reciprocating stairs, pivoting, and cutting, varus thrust or hyperextension thrust with ambulation, varus laxity at 0 indicates both LCL and cruciate (ACL or PCL) injury, positive when lower leg falls into external rotation and recurvatum when leg suspended by toes in supine patient, more consistent with combined ACL and PLC injuries. Lateral short oblique or spiral fracture of fibula (anterosuperior to posteroinferior) above the level of the joint, 4. Login. Outcome after surgery for Maisonneuve fracture of the fibula. If a fibula fracture is associated with a. Fractures may involve the knee, tibiofibular syndesmosis, tibia, or ankle joint. (0/3). 2023 Lineage Medical, Inc. All rights reserved. Etiology. It is the main weight-bearing bone of the two. There will be a pain in the lower leg on weight-bearing although . Repair of the deltoid ligament tear is not believed to be necessary (. Pearls/pitfalls. Fibular fractures may also occur as the result of repetitive loading and in this case they are referred to as stress fractures. Ankle Fractures are very common fractures in the pediatric population that are usually caused by direct trauma or a twisting injury. Obtain AP and lateral views of the shafts of the tibia and fibula. New masking guidelines are in effect starting April 24. Low-energy, nondisplaced (aligned) fractures, sometimes called toddlers fractures, occur from minor falls and twisting injuries. For prognostic reasons, severely comminuted, contaminated barnyard injuries, close-range shotgun/high-velocity gunshot injuries, and open fractures presenting over 24 hours from injury have all been included in the grade III group. check firmness of each compartment to evaluate for compartment syndrome, dorsalis pedis and posterior tibial pulses - compare to contralateral side, CT angiography indicated if pulses not dopplerable, full-length AP and lateral views of the affected tibia, AP, lateral and oblique views of ipsilateral knee and ankle, repeat radiographs recommended after splinting or fracture manipulation, intra-articular fracture extension or suspicion of plateau/plafond involvement, used to exclude posterior malleolar fracture, high variation in reported incidence of posterior malleolus fracture with distal 1/3 spiral tibia fractures (25-60%), closed, low energy fractures with acceptable alignment, < 10 degrees anterior/posterior angulation, certain patients who may be non-ambulatory (ie. Stromsoe K, Hoqevold HE, Skjeldal S, et al. isolated but, in general, the force required to fracture the fibula. Tibia and fibula fractures are characterized as either low-energy or high-energy. With an associated knee injury, patients have pain and swelling of the knee joint. Diagnosis can be suspected with a knee effusion and a positive dial test but MRI studies are required for confirmation. Open reduction and internal fixation is the surgery that can be used to reposition and physically connect the bones in an open fracture. Anterior tibiofibular ligament disruption, 3. highest incidence in male is between 15-24 years of age, highest incidence in females is 75-84 years of age, modified hinge joint consisting of tibia, fibula, and talus, tibial plafond and talus are broader anteriorly and wider laterally, extends from medial malleolus to broad insertion onto navicular, sutentaculum tali, and talus, primary restraint to anterior displacement, IR, and inversion of talus, strongest ligament of lateral complex and least likely to be disrupted, anterior inferior tibiofibular ligament (AITFL), originates from anterolateral tubercle of distal tibia (Chaput), inserts anteriorly onto lateral malleolus (Wagstaffe), posterior inferior tibiofibular ligament (PITFL), broad origin from posterior tibia (Volkmann's fragment), inserts onto posterior aspect of lateral malleolus, distal continuation of intraosseous membrane, peroneus longus and brevis pass along posterior groove of lateral malleolus, at risk with posterolateral fibular plating, located posterior and inferior at the level of the medial malleolus, at risk with posterior placement of medial malleolus screws, course over anterior ankle between EDL and EHL, course posterior to medial malleolus between FDL and FHL, crosses anteriorly over fibula about distal 1/3, at risk with posterolateral and direct lateral approach to fibula proximally and with anterior/anterolateral approaches, at risk with posterolateral and direct lateral approach to fibula, primary restraint to anterolateral talar displacement, acts as buttress to prevent lateral displacement of talus, dorsiflexion results in fibula ER and lateral translation, accommodating anteriorly wider talus, plantarflexion results in narrower, posterior aspect of the talus leading to IR of talus, based on combination of foot position and direction of force applied at the time of injury, has been shown to predict the observed (via MRI) ligamentous injury in less than 50% of operatively treated fractures, 1. A CT scan may be required to further characterize the fracture pattern and for surgical planning. Please . Damage to this nerve may result in deficits in those movements. High-energy fractures, such as those caused by serious car accidents or major falls, are more common in older children. performed with the hip flexed 45, knee flexed 80, and foot is ER 15. Incision. Description. Tibia and fibula fractures can be treated with standard bone fracture treatment procedures. Are you sure you want to trigger topic in your Anconeus AI algorithm? Posterolateral Corner Injury. This type of injury is known as a stress fracture. Fibular fractures in adults are typically due to trauma. Or an external fixator may be used to surgically repair the wound. The tibia is much thicker than the fibula. It may include some of the following approaches, used either alone or in combination: An open fracture occurs when the bone or parts of the bone break through the skin. Legg-Calv-Perthes, Slipped Capital Femoral Epiphysis, and Transient , Thoracic Spondylosis, Stenosis, and DISC Herniations, Musculoskeletal Tissues and the Musculoskeletal System, This website uses cookies to improve your experience. 356 plays. The fracture occurs from a direct blow to the outside of the leg, from twisting the lower leg awkwardly and, most common, from a severe ankle sprain. muscles of the posterior compartment ( tibial nerve) Approach. 2023 Lineage Medical, Inc. All rights reserved, Ohio Health Orthopedic Trauma and Reconstructive Surgery, 2. Ulnar side of hand. Tornetta P, III, Spoo JE, Reynolds FA, et al. 2023 Lineage Medical, Inc. All rights reserved, posterior border of the biceps femoris tendon, Shoulder Anterior (Deltopectoral) Approach, Shoulder Lateral (Deltoid Splitting) Approach, Shoulder Arthroscopy: Indications & Approach, Anterior (Brachialis Splitting) Approach to Humerus, Posterior Approach to the Acetabulum (Kocher-Langenbeck), Extensile (extended iliofemoral) Approach to Acetabulum, Hip Anterolateral Approach (Watson-Jones), Hip Direct Lateral Approach (Hardinge, Transgluteal), Hip Posterior Approach (Moore or Southern), Anteromedial Approach to Medial Malleolus and Ankle, Posteromedial Approach to Medial Malleolus, Gatellier Posterolateral Approach to Ankle, Tarsus and Ankle Kocher (Lateral) Approach, Ollier's Lateral Approach to the Hindfoot, Medial approach to MTP joint of great toe, Dorsomedial Approach to MTP Joint of Great Toe, Posterior Approach to Thoracolumbar Spine, Retroperitoneal (Anterolateral) Approach to the Lumbar Spine, may be done supine with bump under affected limb or in lateral position, Make linear longitudinal incision along the, may extend proximally to a point 5cm proximal to the fibular head, begin proximally and incise the fascia taking great care not to damage the common peroneal nerve, about 10-12 cm above the tip of the lateral malleolus, the superficial peroneal nerve pierces the fascia, distal - may be extended distally to become continuous with, Kocher lateral approach to the ankle and tarsus, susceptible to injury at junction of middle and distal third of leg, if injured will cause numbness on the dorsum of the foot. Figure 3 Normal syndesmotic relationships include a tibiofibular clear space (open arrows) <6 . (1/3), Level 3 Accept At its most proximal part, it is at the knee just posterior to the proximal tibia, running distally on the lateral side of the leg where it . Weening B, Bhandari M. Predictors of functional outcome following transsyndesmotic screw fixation of ankle fractures. Full healing usually is accomplished by 68 weeks. - comminuted fractures of the fibula are often high energy injures resulting from direct lateral trauma or vertical loading; - comminution alters landmarks & complicates rotation and length assessment; C1: diaphyseal fracture of the fibula, simple. The shaft of the fibula serves as origin for the peroneus longus, peroneus brevis, peroneus tertius, extensor digitorum longus, extensor hallucis longus, tibialis posterior, soleus and flexor hallucis longus. The injury produces pain, tenderness, and swelling of the ankle making weight-bearing difficult or impossible. Ulnar gutter splint/cast. Patients with tibia fractures, syndesmosis injuries, or ankle fractures should be referred to an orthopaedic surgeon. Additionally, lateral collateral ligament of the knee originates from the lateral epicondlye of the femur to insert on the superior portion of the fibular head and is the . Patients with fractures of the distal fibula and ankle instability are nonweightbearing until the fracture heals. Isolated fibular fractures comprise the majority of ankle fractures in older women, occurring in approximately 1 to 2 of every 1000 White women each year [ 1 ]. A physical examination and X-rays are used to diagnose tibia and fibula fractures. mechanism of injury. Located posterolaterally to the tibia, it is much smaller and thinner. 2023 - TeachMe Orthopedics. Mechanisms of injury for tibia-fibula fractures can be divided into 2 categories: low-energy injuries such as ground level falls and athletic injuries; high-energy injuries such as motor vehicle injuries, pedestrians struck by motor vehicles, and gunshot wounds. low energy (fall from standing, twisting, etc) result of indirect, torsional injury. - frx above the syndesmotic result from external rotation or abduction forces that also disrupt. Obtain 3 views of the ankle (AP, lateral, and mortise) to look for ankle fracture or syndesmotic disruption. Vaccines & Boosters | Testing | Visitor Guidelines | Coronavirus. Distal tibial metaphyseal fractures usually heal well after setting them without surgery and applying a cast. 2023 Lineage Medical, Inc. All rights reserved, Posterior Malleolus and Fibula Fracture ORIF, Orthobullets Technique Guides cover information that is "not testable" on ABOS Part I, Fracture Preparation and Reduction (Fibula), Soft Tisue Dissection (Posterior Malleolus), Fracture Preparation and Reduction (Posterior Malleolus), firmly hold proximal tibia while contralateral hand dorsiflexes and externally rotates foot, 3-0 nylon for skin with horizontal mattress stitches, in diabetics or patients with high risk for skin breakdown, use modified Allgower-Donati stitch to reduce tension on skin, advance weight-bearing status in CAM boot, if syndesmotic screw(s) placed need to be non-weightbearing, Leg Compartment Release - Single Incision Approach, Leg Compartment Release - Two Incision Approach, Arm Compartment Release - Lateral Approach, Arm Compartment Release - Anteromedial Approach, Shoulder Hemiarthroplasty for Proximal Humerus Fracture, Humerus Shaft ORIF with Posterior Approach, Humerus Shaft Fracture ORIF with Anterolateral Approach, Olecranon Fracture ORIF with Tension Band, Olecranon Fracture ORIF with Plate Fixation, Radial Head Fracture (Mason Type 2) ORIF T-Plate and Kocher Approach, Coronoid Fx - Open Reduction Internal Fixation with Screws, Distal Radius Extra-articular Fracture ORIF with Volar Appr, Distal Radius Intraarticular Fracture ORIF with Dorsal Approach, Distal Radius Fracture Spanning External Fixator, Distal Radius Fracture Non-Spanning External Fixator, Femoral Neck Fracture Closed Reduction and Percutaneous Pinning, Femoral Neck FX ORIF with Cannulated Screws, Femoral Neck Fracture ORIF with Dynamic Hip Screw, Femoral Neck Fracture Cemented Bipolar Hemiarthroplasty, Intertrochanteric Fracture ORIF with Cephalomedullary Nail, Femoral Shaft Fracture Antegrade Intramedullary Nailing, Femoral Shaft Fracture Retrograde Intramedullary Nailing, Subtrochanteric Femoral Osteotomy with Biplanar Correction, Distal Femur Fracture ORIF with Single Lateral Plate, Patella Fracture ORIF with Tension Band and K Wires, Tibial Plateau Fracture External Fixation, Bicondylar Tibial Plateau ORIF with Lateral Locking Plate, Tibial Plafond Fracture External Fixation, Tibial Plafond Fracture ORIF with Anterolateral Approach and Plate Fixation, Ankle Simple Bimalleolar Fracture ORIF with 1/3 Tubular Plate and Cannulated Screw of Medial Malleol, Ankle Isolated Lateral Malleolus Fracture ORIF with Lag Screw, Calcaneal Fracture ORIF with Lateral Approach, Plate Fixation, and Locking Screws, RETIRE Transtibial Below the Knee Amputation (BKA), identify joint involvement and articular step-off (>25%, >2mm requires ORIF), rolls under chest and knees and bump under hip for neutral rotation, between FHL (tibial nerve) and peroneal muscles (SPN), lobster claw or pointed clamps with hand rotation to reduce fibular fracture, move to posterior malleolus and free up fragments, place buttress plate 1/3 tubular or T-plate over posterior malleolus, anterior to posterior screws and 1/3 tubular plate over fibula, perform Cotton test / external rotation stress test to determine if syndesmosis injured, 1 or 2 screws, 3.5/4.5mm, tricortical or quadricortical, 2 wks non-weight bearing in postmold sugartong splint, 4-6 wks in CAM boot with progression of weight bearing and range of motion exercises, identify amount of joint involvement and articular step-off (>25%, >2mm requires ORIF), posterior malleolus fractures <25% of joint surface and <2mm articular step-off can be treated non-operatively in short leg walking cast vs. cast boot, CT often needed to evaluate percentage of joint surface involved, identify ankle fracture pattern (Lauge-Hansen SA, SER, PA, PER) and associated injuries, need to evaluate syndesmotic injury with stress exam, stiffness of syndesmosis restored to 70% of normal with isolated posterior malleolus fixation alone, standard OR table with radiolucent end, c-arm from contralateral side perpendicular to table, monitor at foot of bed in surgeon direct line of site, 2.0/2.5mm drills, 2.7/3.5mm cortical screws, 4.0mm cancellous screws, 1/3 tubular plates (Synthes Small Fragment Set), prone with feet at the end of the bed, bump under hip to get limb into neutral rotation, thigh tourniquet placed while patient supine high on thigh before flipping prone, internervous plane between FHL (tibial nerve) and peroneal muscles (SPN), incision along posterior border of fibula, access fibula with posterior retraction of peroneals, access posterior malleolus with anterior retraction of peroneals, blunt dissection between FHL and peroneals, stack of blue towels under anterior ankle to elevate limb, mark out lateral malleolus, anterior and posterior borders of fibula, borders of Achilles, incision ~6-8cm in length along posterolateral border of fibula, 15 blade through skin then tenotomy scissors to spread subcutaneous tissue with minimal soft tissue stripping, identify SPN with more proximal fractures, take fascia down sharply over posterior border of fibula anterior to peroneal tendons, sharp dissection down to bone with subperiostel dissection at fracture edges, extraperiosteal dissection proximal and distal to fracture site with knife and wood handled elevator, clean out fracture site using freer to open fracture site, curettes, small rongeur, dental pick, and irrigation to remove hematoma and interposed soft tissue, use lobster clamp and pointed clamps to reduce fracture, use hand rotation and contralateral thumb to help guide fragments together, lobster clamp has good hold on bone while pointed clamps have a more fine-tuned feel for reduction, need to be perpendicular to vector of fracture line, place temporary kwires to provisionally fix fragments, identify interval between peroneals and FHL, identify FHL by flexing hallux and watching for muscle belly movement, need to protect and retract posterior tibial neurovascular bundle medial to FHL, place self retainers and incise periosteum over post mal with 15blade, clean fracture site as above with fibula, do not release PITFL off of fragment as this will destabilize syndesmosis and devitalize fragment, fracture should reduce with reduction of fibula, reduce with direct pressure pushing down onto fragment, two 3.5mm screws (2.5mm drill) anterior to posterior in T-plate distal, 2 screws proximal into distal tibia, check placement of plate and screws under fluoro, make sure screws are perpendicular to bone, do not want distal screws (typically 40mm) to protrude anterior and irritate tibialis anterior, after fixing posterior malleolus move back to fibula fracture, place lag screw (2.7mm screw/2.0mm drill) followed with 1/3 tubular plate using antiglide technique on posterior aspect of fibula, place 2-3 3.5mm bicortical screws (2.5mm drill), most distal screw will likely be 4.0 cancellous since its close to joint and/or syndesmosis, check plate and screw positions with fluoro on AP and Lat views, reduction tenaculum is placed ~2cm above joint and lateral pull applied, opening of the syndesmosis on mortise view is indicative of a positive stress test, if increased opening of tibia-fibular overlap syndesmosis is injured, anterior-posterior instability exam is most sensitive for syndesmosis injury, formally open the anterior aspect of the syndesmosis (anterior to fibula), remove interposing tissue if preventing reduction, place Weber pointed clamp or large periarticular clamp across syndesmosis, one tine on medial tibia and other on lateral fibula, hold foot in neutral dorsiflexion andinspect syndesmosis from lateral incision, inspect syndesmosis from lateral incision to ensure anatomic reduction, use 2.5mm (or 3.5mm) long drill bit to drill across fibula into tibia, drill bit orientation parallel to joint 2-4cm above joint, drill bit is angled ~20-30 posterior to anterior due to fibular position in syndesmosis, obtain final AP, mortise, and lateral radiographs, irrigate wounds thoroughly and deflate tourniquet if used, deep fascial closure over plate with 0-vicryl, soft incision dressing followed by postmold sugartong splint with extra padding under heel for immobilization, remove splint and place in short-leg cast boot, non-weight bearing, can allow ROM if soft tissue is appropriate, advance weight-bearing if diabetic, insensate, or syndesmotic screws present, syndesmotic screws to stay in for at least 12 weeks, syndesmotic screws will loosen or break if maintained, superficial and deep infections (1-2%, up to 20% in diabetics), peroneal irritation from posterior fibula antiglide plating, iatrogenic injury to SPN during fibula exposure, PITFL, posterior tibial neurovascular bundle during FHL exposure.

Module 'pandas' Has No Attribute 'timegrouper', Prepac Yaletown Armoire Assembly Instructions, Ground Spikes Enchantment Origins, Witcher 3 Marlin Coast Blacksmith, St Anthony High School Basketball Coach, Articles F